腸内細菌(Escherichia coli) は ヒトの腸でどんな働きをするか

細菌Escherichia coli (エシャリキア コーライ) (以下E. coli ;大腸菌)は一般にE. coliとして知られ、裏表のある悪い細菌と言われている。多くの菌株はヒトや他の哺乳類に、穏やかに住んでいる。腸の中の宿主の食べ物をつまみ食いするだけで、害を与えない、時には宿主有益な場合もある。

の中の宿主の食べ物をつまみ食いするだけで、害を与えない、時には宿主有益な場合もある。 しかし、グロテスクなE. coliの感染は違った一面を持っている。病原性に汚染された食物を摂取した

しかし、グロテスクなE. coliの感染は違った一面を持っている。病原性に汚染された食物を摂取した 後、そのヒトは嘔吐、下痢、赤痢を経験する。そしてまれなケースでは、そのパクテリアが腎臓障害、 死に至ることもある。

リベラルアート(一般教諭過程)大学の分子細胞学の准教授、ケン・カンペロンは、どうしてこれらのバクテリアがこうも異なる役目をするのかを知りたいと考えている。E. coliとヒトの腸の細胞の相互作用に的をしぼることによって、彼はバクテリアがどんな作用をするのかだけではなく、ヒトの細胞がどう作用するかを研究している。

最近ケン・カンペロンはE. coliに乗っ取られた大腸の細胞のタンパク質が、バクテリアを小腸壁に結合させることを発見した。

病原体はヒトの細胞の正常な過程を占拠する実に賢明な方法を見つけた、と彼は言う。多くの場合、 パクテリアはヒトの細胞についてヒトよりもよく知っている。本当に興味をそそられる。

キャンペロンが研究しているE. coliは腸管出血性大腸菌(EHEC)と呼ばれているグループで、ヒトが

汚染された肉や野菜を食べて感染した場合にニュースになることが多い。2011に出血性病原体がドイツに発生し、3700人が感染し、45人が死亡した。病気の管理、予防センターは、アメリカでは毎年約75,000の感染者がでると推定している。

その細菌がこれほど悪性である理由はバクテリ危険なバクテリアによる遺伝子の獲得によるものであるとカンペロンは言う。科学は幾つかの種類のE. coliのDNAの配列をたしかめた。病原性でない、コメンサルなE. coliにはない1,000以上の遺伝子を見つけた。比較的すくない幾つかの種類が特徴づけられた。

コメンサル型と違うEHEC の遺伝子について、ほんの少ししか知らない。共存型(生態学:両者が利益を得る共存) 私のゴールは如何にしてイフェクターと呼ばれている。タンパク質かコード化されているE. コーライのグループを理解することであると彼はいう。

E. coliとヒトの共生関係とはなにか?

ヒトはE. coliに快適な環境を提供いている。バクテリアは生存と増殖に必要な栄養分をヒトからもらう。 その変わりE. coliはビタミンKやその他重要な栄養分の吸収を可能にする。

特に、最も危険なタイプは、有毒物質を出す遺伝子を獲得している。それは〝シガ毒"と呼ばれている。キャンペロンは、"シガ"毒は具合が悪いという程度から生命を脅かす種類までいろいろなバクテリアがあると言う。

と、重篤な腎臓障害を起こし死にいたる。その上、現在のところ、その敗血症症候群に効く薬品はない し、抗生物質は症状を悪化するだけで、回復力を待つしかない。 キャンペロンの研究は如何にして、タンパク質が移動し、幾つものタンパク質のヒトの細胞の形態を

毒素が腸に排出されただけなら、下痢や赤痢を起こすと彼は言う。しかし、その毒素が血流に入る

コントロールするのかに焦点を絞っている。E. coliが腸壁に付着する時、タンパク質が正常な組織を混 乱させる。その時タンパク質はバクテリアのタンパク質を腸の細胞に送り込む。そこで、反対に正常は 形態の細胞の特殊なタンパク質をバクテリアに取り入れる。

The bacterium Escherichia coli, commonly known E. coli, has a duplicitous reputation. Scientists tell us that most strains of the microbe live peacefully in our guts or the guts of

How E. Coli Work in the Human Gut

other mammals, munching on bits of food, causing no harm or even creating benefits for their hosts.

But the grotesque imagery of E. coli infections tells a different story: After eating food contaminated with pathogenic strains, people can experience vomiting, diarrhea, and

dysentery. And in rare case, the bacteria can lead to kidney failure and even death.

Ken Campellone, assistant professor of molecular and cell biology in the College of Liberal Arts and Science, wants to understand how these bacteria can play such different roles. By focusing on the interactions between one of the deadliest E. coli strains and the cells of the human gut, he's learning not only how the bacteria work, but how our own cells work, too. Recently, Campellone discovered a particular protein in the cells of the human large intestine that is taken over by E. Coli cells and helps to bind the bacterium to the intestinal wall.

"Pathogens have found really clever ways of taking over the normal processes of our cells,"

The strain of E. coli that Campellone studies belongs to a group of the bacteria called Enterohemorrhagic E. coli, or EHEC, that often makes international news when people eat contaminated meat or vegetables. In 2011, an outbreak of a hemorrhagic strain in Germany infected more than 3,7000 pee, killing 45. The centers for Disease Control and Prevention estimate that about 75,000 infections occur each year in the United States.

The reason for this high level of virulence, say Campellone, is a series of genetic acquisition by the harmful bacteria. Scientists have sequenced several types of E. coli, and they've found more than 1,000 genes in the harmful group that are not present in the harmless, or

he says. "Often they know more about our own cells than we do, and it's really intriguing."

pathogenic, relatively few have been characterized.

"We know very little about the genes in EHEC that are different from the commensal (commensalism: in ecology, is a class of relationships between two organisms benefit From each other) version," he says, "My goal to better understand how a group of genes that encode proteins called effectors take over their human cell targets."

commensal, group. But, he adds, of the roughly 1,000 genes that have been identified as

....

What is the symbiotic relationship between E. coli and humans?

The human body provide E. coli with a comfortable living environment in which thebacteria receive the required nutrients for reproduction and growth. E. coli, in turn, makes it possible for humans to absorb vital nutrients, including Vitamin K through colon.

In particular, the most dangerous types have acquired the genes to produce a poisonous substance called Shiga toxin, which Campellone says can produce an illness ranging from unpleasant to life-threatening.

"If the toxin is just released into your intestines, you would get diarrhea and dysentery," he says. "But if it enters your bloodstream, it can cause serious kidney damage and become fatal." Plus, he adds, there are currently no known medicines for the blood poisoning

syndrome and antibiotics only make only make the symptoms worse. Patients just have to wait and hope.

Campellone's research focuses on how the trafficking and organization of proteins control the shape of cells. When E. coli affix themselves to the intestinal wall, they disrupt its normal organization. They do this by delivering bacterial proteins into the cell, which in

turn recruit specific intestinal cell proteins that normally shape the cell.