グルコースからATP

生体は如何にして食べた物をエネルギーにかえるか?

体の全て、(筋肉、脳、心臓、肝臓)はエネルギーが必要である。そのエネルギーは食べた物から作り 出される。食べた物は胃の中で液体(酸や酵素)に混ぜられ消化され。胃の中で、炭水化物(糖、でん ぷん)はグルコースに分解される。小腸で吸収され、血流に放出される。いったん血流に入ると、グル コースはすぐに利用されるかまたは、後で利用するために蓄えられる。しかしながらコースをすぐ利用 する場合も、蓄える場合もインスリンが必要である。インスリンがないと、グルコースは血管にこもっ たままの状態で、血糖値が上がる。

インスリンは膵臓のベータ細胞で作られるホルモンでえある。インスリンは血管内のグルコースの量に

インスリンは如何にして作られるか?

敏感である。正常な場合、インスリンは血糖を数秒単位でチェックする。そして、インスリンの量を増 減する。パン等炭水化物の多い食事をすると、血値が上がり、ベータ細胞が膵臓を刺激して、より多く のインスリンを血流に放出する

膵臓からインスリンが分泌されると、それは血管を通って、体細胞に到達すると、ドアを開けてグルコ - スを中へ入れるように言う。細胞内に入ると、細胞はすぐにグルコースをエネルギーに変えるか、ま

インスリンは細胞のドアを開ける

たは保存する。グルコースが血管から細胞に入ると、血糖値が下がる。膵臓のインスリンがそれを感知 すると、インスリンの供給量を減らす。同時に膵臓は血管へのインスリンの供給量を減らす。そして、 細胞へ行く量も減る。

解糖、クレープスサイクル

グルコースは2分子のリングリセドアルデヒドに分解される。このとき2分子のATPが必要である。

解糖の第1ステージ

解糖の第2ステージ

CoA

S-CoA

・2分子のピルビン酸から4分子のATPと2分子のNADHができる。 解糖から最終的に2分子のATPができる

・2分子のリングリセルアルデヒドが2分子のピルビン酸に変換する。

- O. NADH

クレプス回路

ピルビン酸をAcetyl CoA に変換

- ・クレプス回路とピルビン酸のCoA への変換は1分子のグルコースから2分子のATP と8分子のNADH
- を産生。

・ミトコンドリア

・ 2段階

クレプス回路

8 NADH

used later.

- ピルビン酸の酸化でアセチル CoA となりクレプス回路に入る ・1分子のピルビン酸から2分子の NADH ができる。

・CoA から6分子の NADH ができる。 ・2分子の FADH ができる。

・4分子の二酸化炭素ができる。 従って、ピルビン酸の酸化とクレプス回路から産生される分子の合計は

・1分子のピルビン酸から2分子の CO2 が放出される。

2 FADH2

・2分子の ATP ができる。

- 2 ATP 6 CO2
- How Our Bodies Turn Food into Energy?

comes from the food we eat.

down into another type of sugar, called glucose. The small intestines absorb the glucose and then release it into the bloodstream. Once in the bloodstream, glucose can be used immediately for energy or stored in our bodies, to be

inulin, glucose stays in the bloodstream, keeping blood sugar levels high.

pancreas to release more insulin in the bloodstream.

Insulin Opens Cell Doors

How thee Body Makes Insulin Insulin is a hormone made by beta cells in the pancreas. Beta cells are very sensitive to the

However, our bodies need insulin in order to use or store glucose for energy. Without

All parts of the body (muscles, brain, heart, and liver) need energy too work. This energy

Our bodies digest we food w eat by mixing I with fluids (acids and enzymes) in the stomach. When the stomach digest food, the carbohydrate (sugars and starches) in the food breaks

amount of glucose in the bloodstream. Normally beta cells check the blood's glucose lever every few seconds and sense when they need to speed up or slow down the amount of insulin they're making an releasing. When someone eats something high in carbohydrates,

body's cells and tells the cell doors to open up to let the glucose in. Once inside, the cells convert glucose into energy to use right then or store it to use later. As glucose moves from the bloodstream into the cells, blood sugar levels start to drop.

When insulin is released from the pancreas, it travels through the bloodstream to the

like a piece of bread, the glucose level in the blood rises and the beta cells trigger the

insulin they're making. At the same lime, the pancreas slows down the amount of insulin that it's releasing into the bloodstream. When this happens, the amount of glucose going into the cells also slows down Glycolysis, Krebs Cycle

The First Stage of Glycolysis

Glucose (6C) is broken down into 2 PGAL's (Phosphoglyceraldehyde) This requires two ATP's

Oxidation of Pyruvate and he Krebs Cycle

The beta cells in the pancreas can tell this is happening, so they slow down the amount of

The second Stage of Glycolysis 2 PGAL's (3C) are converted to 2 pyruvates This create 4 ATP's and 2 NADH's The net ATP production of Glycolysis is 2 ATP's

· Goal+ take pyruvate and put it into the Krebs cycle, producing NADH and FADH2;+

· The Krebs cycle and the conversion of pyruvate to Acetyl CoA produce 2 ATP's, 8 NADH's, and 2 FADH2"s per glucose molecule

 2 NADH's are generated (1 per pyruvate) 2 CO2 are released (1 per pyruvate)

· Where: the mitochondria

+ The Krebs Cycle proper

There are two steps

+ The Conversion of Pyruvate to Acetyl CoA

Ο. NADH CoA S-CoA NAD+ C=0C=OC=O CO₂CH3 アセチル CoA↩ CH3 ピルビン酸

The oxidation of Pyruvate to form Acetyl CoA for Entry into the Krebs Cycle

- The Krebs Cycle 6 NADH's are generated (3 per Acetyl CoA that enters)
- 2 FADH2 is generated (1 per Acetyl CoA that enter) 2 ATP are generated (1 per Acetyl CoA that enters)
- 4 CO2's are released (2 per CoA that enters)