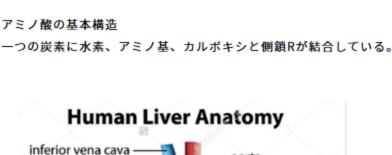

Absorption of Carbohydrates 炭水化物の吸収

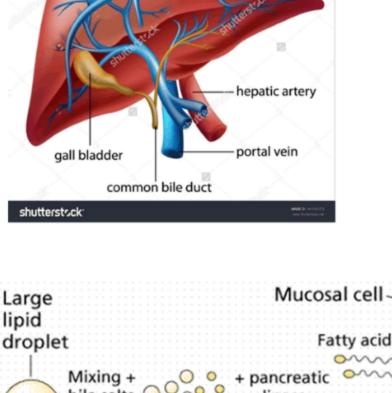
and into blood. The transporter that carries glucose and galactose into the enterocyte is the sodium-dependent hexose transporter. As the name indicates, this molecule transports both glucose and sodium ion into the cell and in fact, will not transport either alone.

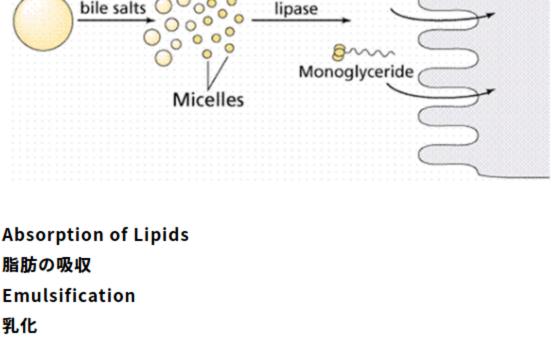
グルコース(ブドウ糖)の吸収は消化管から、上皮を横切って血管への輸送が必要である。ブドウ糖と

galactose(乳糖)を腸細胞に輸送にはNa+(ナトリウムイオン)の 助けを必要とする。hexose transporter(五単糖運び屋)である。その名前が示すように、この分子はブドウ糖とナトリウムイオ ンを同時に運ぶ。そのどれも単独では移動できない。

Absorption of Proteins


タンパク質の吸収


The absorptive cells, or enterocytes, lining your small intestine create a barrier between your gut and your bloodstream. To reach the cells throughout your body, amino acids must travel from your gut, following digestion to your blood, and your enterocytes accomplish


this with the help of transporter molecules. These transporters are specific for individual amino acids depending on the chemistry of their R-groups. With the help of sodium, the transporter reaches through the cell membrane on the side of the enterocyte adjacent to your gut and grabs a single amino acid. It pulls it inside the enterocyte and release it, where a different transporter – this one not dependent on sodium – picks it up and carries

it to the side of the cell next to your bloodstream. Here it deposits the amino acid into capillaries that enter into your general circulation. 小腸の内膜Enterocyte (腸細胞又は吸収細胞とも言う)は腸と血管との間の防御壁となっている。体 中の細胞に到達するには、アミノ酸は小腸から血管に移動しなければならない。 そして腸細胞は運び 屋分子の助けを借りて実行する。これら運び屋はアミノ酸のR-グループによってその分子が異なる。運 び屋は腸細胞の細胞膜を通過して一個のアミノ酸を捕まえ、腸細胞の中に引き入れてから離す。そこで 別の運び屋、それはナトリウムイオンの助けを必要としない、がそれを拾い上げて、血管の隣の細胞に

運ぶ。そこで、アミノ酸を毛細血管に投入する。アミノ酸は全身循環にはいる。

Dietary lipids pass from the stomach to the small intestine in a mud-like mixture of food particles and stomach acid known as chyme. The presence of chyme triggers the release of bile from the gallbladder into the small intestine. Bile reacts with fat globules in chyme,

breaking them into tiny bile-containing fat droplets. This process, known emulsification, prepares the ingested lipids for the next step in the digestive and absorptive process.

きべ物に含まれた脂肪は胃から小腸の泥のようになった食べた物と胃液の混合物、Chyme(乳糜)に

備をする。

Enzymatic Breakdown The presence of chyme in the small intestine stimulates the release of pancreatic digestive fluids and enzymes, including the fat-digesting enzyme lipase. Lipase reacts with the

emulsified fat droplets breaking down the complex dietary fats into smaller lipid particles known as fatty acids and mono-glycerides, notes biologist David Sadava、Ph.D., coauthor

小腸の乳糜は膵臓からの消化液と、脂肪消化酵素リパーゼを含む酵素の分泌を促す。 リパーゼは乳化し

of "Life: The Science of Biology." Thus, lipase converts dietary lipids into smaller,

送られる。乳糜は胆のうから小腸への胆汁の分泌を促す。胆汁は乳糜の小さい粒と反応して、細かい胆 汁を含んだ脂肪の粒に分解する。この過程が乳化で、摂食したリピッドを消化吸収の次のステップの準

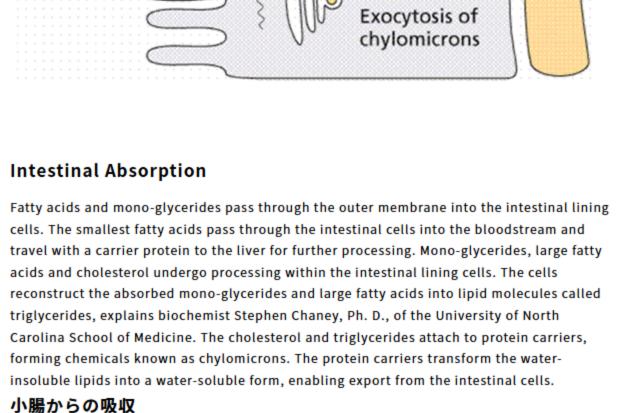
た脂肪滴と反応して、複雑な構造の脂肪をより小さい脂肪酸とモノグ セライド(グリセロールと1分 子の脂肪酸がエステル結合したもの)。に分解する。従って、リパーゼは食物に含まれたリピッドをよ り小粒で吸収可能な 脂肪粒子に変える。

Fatty acid

Monoglyceride

absorbable fat particles.

酵素による分解


Mucosal cell Lymphatic Endoplasmic reticulum

vessel

Triglycerides

Formation of chylomicrons

synthesized

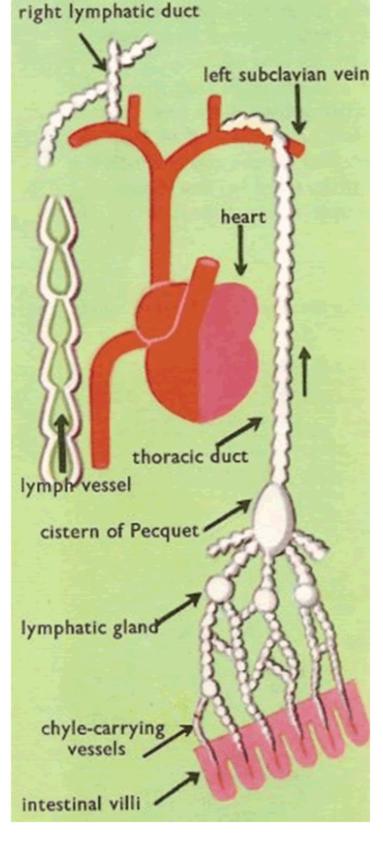
Lymphatic Absorption The intestinal cells extrude the chylomicrons formed from absorbed dietary fat into a liquid transport network known as the lymphatic system. The lymphatic system transports the absorbed chylomicrons to the bloodstream. The liver and other body tissues process

小腸の細胞は、吸収した脂肪からなる乳糜(chylomicrons)をリンパ組織と言う液体輸送ネットワーク に排出する。リンパ組織は吸収した乳糜を血流に輸送する。肝臓やその他の体組織が乳糜を保存用に、

脂肪酸とモノグリセリッド(グリセロールと1分子の脂肪酸がエステル結合したもの)が外膜から小腸 の管壁細胞に入る。最も小粒の脂肪酸は小腸の細胞を通って、血流に入り運び屋タンパク質といっしょ

モノグリセリッド、大粒の脂肪酸、それにコレステロールは小腸の管壁細胞で、処理される。 細胞は 吸収したモノグリセリッド、大粒の脂肪酸をトリグリセリッド(1分子のグリセロールに3分子の脂肪

DIAGRAM OF THE LYMPHATIC SYSTEM


またはすぐ利用できるように処理する。

リンパの吸収

に肝臓で、さらに処理される。

酸がエステル結合したもの)に再構築する。

chylomicrons for storage or immediate utilization.

